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Dilation sheath of smectic- A focal-conic singular lines
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We study the validity of the lamellae equidistance approximation within smectic- 4 focal conics. We
show the existence of a lamellae dilation sheath surrounding the singular lines cores. The dilation is es-
timated using a perturbative model starting from the ideal focal-conic approximation. It is found to de-
cay algebraically away from the singular lines cores, and its energy contributes to the total energy of the

focal conic.

PACS number(s): 61.30.Jf

Smectic-A4 liquid crystals are lamellar phases. They
consist of piled liquid monolayers of rodlike molecules,
which are oriented normally to the lamellae. The period
ay~30 A compares with the molecular length. The
smectic- 4 elastic distortions involve lamellae curvature

o=divn , (1)

where n is the normal to the lamellae (o is also equal to

the sum of the lamellae principal curvatures
1/R,+1/R,), and lamellae dilation
a—a
o= o, 2)
ap

]

where a is the lamellae thickness. By ‘dilation,” we in-
tend both positive and negative thickness variations. The
local energy density for large scale distortions is simply

(1]
f=1Ko*+1Be’. (3)

(K /B)'?=) defines a characteristic length usually com-
parable with the lamellae thickness, i.e., microscopic.
Minimization of (1) yields the smectic-4 equilibrium
equation

div{A’V,0 +en} =0, )

where Vo =Vo —(Vo-n)n is the curvature gradient pro-
jected parallel to the lamellae. This equation, first ob-
tained by Kleman and Parodi [2], is the covariant equa-
tion that generalizes the well-known de Gennes equation
[3] valid only for quasiplanar layers. For a straightfor-
ward derivation of Eq. (4), see Ref. [4]. Smectics are fre-
quently subject to external boundary constraints inducing
large scale curvature o ~1/d (d is the sample thickness).
Since curvature and dilation are not independent vari-
ables, some lamellae dilation arises even if the boundary
conditions do not directly impose it. In the latter case,
however, as long as d >> A, the dilation is extremely small
(e £A/d; otherwise, it would exceed the curvature ener-
gy)-

The usual theory of macroscopic smectic defects as-
sumes that the interlayer distance is exactly constant [5],
i.e., e=0. This implies that all the (curved) lamellae be
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strictly parallel and thus share a common curvature
center locus. This locus, called the “focal” of the texture,
is generally a pair of surfaces. The latter are singularities
for the smectic piling, and because they are too energetic
they degenerate to a pair of lines. The layers assume then
the shape of the so-called Dupin’s cyclides. The focal is a
pair of an ellipse and a hyperbola, in perpendicular
planes, the focus of one coinciding with the summit of the
other. These ideal textures of parallel equidistant layers
are called focal conics [5-7].

Real smectics show textures with pairs of singular el-
lipses and hyperbolas that look very similar to the
above-described geometrical textures. However, the
latter are not physical: %Be2 alone is minimized (e =0)
but not the total elastic energy density (3) (the layer shape
is defined by the requirement that the focals degenerate
to lines). As was proposed in Ref. [2], real focal conics
should present a little dilation. From our previous ener-
getic arguments, the latter must be very small as long as
the curvature radiuses are macroscopic. However, the
lamellae curvature diverges when approaching the singu-
lar lines. In this paper, we study the validity of the lamel-
lae equidistance approximation in the vicinity of the el-
lipse and hyperbola singular lines. Note that our purpose
is not to discuss a model for the singular lines cores, but
to investigate the discrepancy between real and geometri-
cal focal conics inside their bulk when approaching the
lines cores.

Let us first define more precisely the cores of the singu-
lar lines. Extrapolating the focal-conic texture up to the
ellipse and hyperbola lines leads to a divergence of the
lamellae curvature and to a discontinuity of the lamellae
orientation. This implies that the smectic will be highly
distorted around these lines. The standard elastic energy
(3) is no longer valid in these regions. One must consider,
in addition, other distortions such as a tilt of the mole-
cules with respect to the lamellae normal, the fusion of
the smectic or nematic orders, etc. Accordingly, one
should consider the tilt and fusion energies, the energies
associated with the nematic bend, and twist distortions
and higher-order smectic terms. It has been shown that
these additional variables and energy terms are
infinitesimal as soon as the scale of the distortions is
larger than some corresponding coherence and penetra-
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tion lengths [1,8]). Far from second-order phase transi-
tions, these lengths are ~A, i.e., comparable to a few
molecular lengths. Consequently, the lines distortions
will vanish exponentially outside a core of size ~A cen-
tered on the singular lines. In principle, outside the
cores, other terms such as the nematic constants K ;; and
K,, (saddle splay) should also be added to (3). However,
they do not contribute to Eq. (4) since they are surface
terms [9,10]. In other words, Eq. (4) can be considered as
correct up to a distance of order a few A from the lines
cores.

Let us now define precisely the geometrical focal conics
(of the first species [5]) and introduce the “confocal coor-
dinates” (Fig. 1). The following parametrization and
identities are taken from Ref. [11]. The ellipse (&) and
the hyperbola (#£), respectively, in the (x,y) and (x,z)
planes, are parametrized by

x'=a cos¢ x""=c coshu
é6: : (3)

y'=b sing, z''=b sinhu,

where ¢ =(a?—b?)!/2. The lines EH joining a point of &
to a point of #f are called generators. The length of a seg-
ment [E,H] is

L =a coshu —ccos¢>0 . (6)

The focal-conic texture is such that the normals to the
lamellae are everywhere parallel to the generators. The
surfaces perpendicular to the generators are called
Dupin’s cyclides; they are the lamellae of the geometrical
focal conics. When the ellipse degenerates to a circle, the
lamellae are simply concentric tori folded around the cir-
cle. The space is conveniently parametrized in coordi-
nates (@, u,r,), where (¢, u) defines a generator and r is a
distance measured along the latter oriented from E to H.
It is convenient to choose the origin of r such that
Dupin’s cyclides satisfy » =const. This is done by choos-

FIG. 1. A focal conic with its elliptical (&) and hyperbolical
(¥#) singular lines. The smectic lamellae are Dupin’s cyclides,
satisfying » =const in the (¢,u,7) “confocal coordinates.” The
origin of r on each generator is defined geometrically by its in-
tersection with circle (@), the latter being the normal section of
the revolution cone issuing from point H(u) that passes through
the minor axis of the ellipse.
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ing an origin O(¢,u) different on each generator, such
that O is prior to H and at a distance a coshu (Fig. 1).
We shall call such coordinates confocal coordinates. By
construction, the geometrical focal conics satisfy

n(r)=e, ,

e(r)=0.

(7)

The confocal coordinates are orthogonal with elementary
arclengths

ds’=dr*+FXd¢*+U%du? . (8)
Let us now focus on the points that are within the seg-
ments [ E, H]; they satisfy ¢ cos¢ <r <a coshu. Their dis-

tances (along the generators) to the singular lines are, re-
spectively,

dg=r—ccos¢>0,
9)
dg=acoshu—r>0.

We have then L =dg +dy. The coefficients of the funda-
mental quadratic form (8) are given by [11]

d
F=b
10
U*de (10
e

The differential operators appearing in Eq. (4) are thus
given by [12]

O 10 1203
Ve = et F 6% Uau
an
1 | o ] 3
ivh=—— | — L (Uhy)+=-(Fh,)| .
divh FU ar(FUh’)+6¢( ) au( w)

Let us now show that geometrical focal conics are not a
solution of the smectic equilibrium equation (4). We shall
calculate div(Vi,a) in confocal coordinates, with
o=dive, [cf. Egs. (1) and (7)]. Making use of Eqgs.
(9)-(11), we obtain

1 9(FU)_ 0 1 1

9 =" = (12
5y In(dpdn)= - (12)

TFU or

which was expected since the ellipse and the hyperbola
are the centers of curvature of the Dupin’s cyclides.
Since (e4,e, ) are parallel to the lamellae, we have simply

1 3o 1 do
=—— ———e, . (13)
Vo F 3¢ e,t U ou S
Thus,
1 d |Uadc d | F do
i =— | = | o || 14
dvVio)= %0 |36 | F 3¢ | ou | U ou H
Straightforward calculations yield then
272 202 2612
div(A2V,0)= itf |+ c’sin’¢ _ a’sinh’u
bdgdy dg dy

(15)
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This quantity does not vanish identically; therefore,
geometrical focal conics do not satisfy Eq. (4).

Let us now consider a real focal conic. Since it closely
resembles a geometrical focal conic, it should obey

n(r)=e,+6n(r),
(16)
e(r)=0+¢(r),

where 8n and € are small quantities (at least outside the
cores). However, such equations do not define a unique
texture. In principle, to solve the problem, one should
express n and e as functions of a given texture (e.g., via
the phase function of Ref. [2]). Then, Eq. (4) should be
solved with the right boundary conditions. One faces
then a difficult problem since Eq. (4) is not valid up to the
(cores) boundaries. Nevertheless, it is possible to get
some information about the lamellae dilation inside the
focal-conic bulk. We shall use a perturbative model. A
glance at (13) shows that within a geometrical focal con-
ic, A’V 0 =A%V (dive,) is of order A?/d* and thus is
infinitesimal well outside the cores since A is a microscop-
ic length. Therefore, to calculate the first-order approxi-
mation to €, we can neglect in Eq. (4) the higher-order
contribution to kzvno coming from 6n. Our perturbative
approach will then consist in solving Eq. (4) with n and e
given by Egs. (16) where &n is set equal to zero:

B

or

Calling now

§=dg ,

+e dive, +A%div[V (dive,)]=0 . (17)

L—&=dy,
Eq. (17) becomes explicitly

o3 1 1
9§ & L—¢
272 202 212
— AL L+csm¢__asmhu
AL —E)? £ L—¢
(19)

This equation is a first-order linear differential equation.
The solution of its homogeneous part is const /[§(L —§&)],
and the complete solution is

_&

In

qom S a |ETE] cins L
EL—E) b2 EL—E b2 L—§& ¢
A A
a%inh®u L  A?
— — , (20)
b & (L—§&)
where

a=L?*+c%in*¢—a’sinh’u

and ¢ is a constant (depending on ¢ and u). As explained
above, (20) is only valid outside cores of size ~A. We can
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admit that it works qualitatively well within, say,
E£€]3A,L —3A[. Another limitation comes from the fact
that the geometrical approximation for focal conics is not
valid far above the ellipse plane as shown in Ref. [13];
therefore, we shall also keep u of order unity. Deep
within the bulk of the focal conic (§~L /2), the dilation
given by (20) is e~gy+O(A?/L?). The validity of our
perturbative model requires, therefore, £, <<1.

From (20), we see that the dilation becomes rather
large close to the cores. Keeping only the terms that are
dominant close to the ellipse, we are left with

2
L czsinzg A

e~gqg— + — (EZ3N) 21

(] § b2 g g
and close to the hyperbola,
L a’sinh’u A < .
~ SL—3A).
€ EOL—§ b2 I—¢ | (&
(22)

To ensure <1 close to the cores, we must assume
gg<A/L.

The two terms of Egs. (21) or (22) have different physi-
cal origins. Let us come back to Eq. (4). It expresses the
balance between the dilation and the curvature forces act-
ing normally on the lamellae. It can be written as

Ve-n+e0=—div(k2V”0) , (23)

which is term to term equivalent to Eq. (19). The first
contribution in (21) and (22), coming from the homogene-
ous part of Eq. (19), results from the left hand side of Eq.
(23). It simply traduces the “propagation" of an imposed
dilation within the curved texture: Imagine, as an exam-
ple, a system of concentric cylindrical layers submitted to
an external dilation. Since there are no parallel curvature
gradients, Eq. (23) reduces to its left hand side, i.e., to
div(en)=0. Thus, in a sector of angle 3 limited between
radii R, and R,, this “propagation” reads e;R;=¢e,R,;.
It reflects the mechanical equilibrium of the sector under
the action of dilation forces. €, could be either imposed
by the cores (which might somehow reduce in this way
their energy) or by a mechanism of compensation be-
tween the two terms of (21) and (22). The second dilation
term in (21) and (22) results from the bulk of the focal
conic. Since it comes from the right hand side of Eq.
(23), it is a reaction to the curvature forces arising from
the shape of the lamellae (Dupin’s cyclides). It sign is al-
ways positive and it vanishes on the summits of the ellipse
and hyperbola singular lines. Close to the singular lines,
it gives rise to a dilation energy ~1B(A/d )4, d being the
distance to the singular line. As K =BA\?, it is compara-
ble close to the lines to the curvature energy density
~1K(1/d)%

In conclusion, we have shown that the usual lamellae
equidistance approximation is not valid within the bulk
of the focal conics around the singular lines. The latter
have a coaxial structure: their core is surrounded by a
lamellae dilation sheath. The corresponding dilation de-
creases algebraically away from the cores (whereas the
distortions within the cores decreases exponentially).
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The dilation sheath has mainly two contributions, as fol-
lows.

(i) The first is a short-range one, decreasing as 1/d? (d
is the distance to the cores), which is a reaction to the
lamellae Dupin’s cyclide shapes that give rise to curva-
ture forces. This dilation is positive and large (close to
unity) in the vicinity of the cores. It vanishes at the sum-
mits of the singular lines (and thus along the circle for a
revolution focal conic). Its energy should compare both
to the curvature and to the cores energies of the focal
conic.

(ii) The second contribution is a long-range one, de-
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creasing as 1/d, whose sign and amplitude ¢, cannot be
determined within our perturbative model. It might be
caused by the cores or appear to compensate the positive
short-range dilation. In the latter case it would propa-
gate a negative dilation far within the focal-conic bulk.
Experimental studies of lamellae thicknesses could mea-
sure €, and allow us to develop core models for the focal-
conic singular lines.

The author is indebted to G. Durand and to P. Galato-
la for useful discussions.
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